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It has been determined experimentally that the addition of a soluble polymer imparts 
additional properties to the turbulent motion of a liquid. The most significant new prop- 
erty is a reduction in the viscous friction (drag) of the solution. An analysi s of the ex- 
perimental results [1-4] shows that polymer molecules diminish the turbulent viscosity of a 
weak polymer solution in comparison with the turbulent viscosity of the ordinary liquid. 
The mechanism responsible for the change in the turbulent viscosity can be explained by the 
tendency of the polymer molecules to decrease the intensity of longitudinal and transverse 
velocity fluctuations in the turbulent core of the flow. 

It is generally known that minute polymer additives to a liquid do not affect the prop- 
erties of laminar flow. It is reasonable to assume, therefore, that weak polymer solutions 
will not directly affect the viscous sublayer. The thickening of the viscous sublayer [i, 5, 
6] can be attributed only to the secondary influence of the turbulent core on that sublayer. 
This effect takes place because a new equilibrium between the reduced Reynolds tangential 
stress in the flow core and the tangential stress at the boundary of the viscous sublayer 
is created by the thickening of the sublayer. 

Consequently, the model of the turbulent wall motion of weak polymer solutions is en- 
visioned as comprising a viscous sublayer having the physicomechanical properties (transport 
coefficients) as the main liquid, plus a turbulent core with diminished turbulent transport 
parameters due to the presence of the polymer molecules. Linematic and dynamic coupling 

�9 exists between the viscous sublayer and turbulent core. This coupling is nonsteady, but in 
experimental work the kinematic parameters are averaged over space and time. 

The adopted model of turbulent motion permits us rouse the Boussinesq equation with 
consideration for the influence of polymer additives 

�9 =T ~ I+6 ~, (i) 

where T is the tangential stress, ~ is the dynamic molecular viscosity coefficient, ~T is 
the dynamic turbulent viscosity coefficient of the ordinary liquid, and ~ is the coefficient 
of influence of polymer additives on turbulent motion. This result is equivalent to the as- 
sertion that the dynamic coefficient of the viscous sublayer has ostensibly increased over 
the value for the ordinary liquid, because for weak polymer solutions 8 < i. 

The expression for the kinematic turbulent viscosity VT of the ordinary liquid can be 
written in the form ~T ~ ~Re, where ~ is the kinematic molecular viscosity coefficient and Re 
is the Reynolds number. The flow regime changes when ~T = v, i.e., when Re = Recr, where 
Recr is a critical value of the Reynolds number. In this case the expression for the 
kinematic turbulent viscosity takes the form 

~ = vHe/Recr = AvRe .  

T h i s  e x p r e s s i o n  i s  v e r y  w e l l  s u b s t a n t i a t e d  by  p u b l i s h e d  e x p e r i m e n t s ,  i n  p a r t i c u l a r ,  t h e  d a t a  
o f  I .  N i k u r a d z e  [ 7 ] ,  wh ich  a f t e r  s u i t a b l e  p r o c e s s i n g  y i e l d  v a l u e s  o f  A = 0.Q0039_06 and Rec r  = 
2560 f o r  f u l l y  d e v e l o p e d  t u r b u l e n t  m o t i o n .  

The v a r i a t i o n  o f  t h e  k i n e m a t i c  t u r b u l e n t  v i s c o s i t y  a l o n g  t h e  r a d i u s  o f  t h e  p i p e  c a n  be  
estimated on the basis of dimensional considerations. The tangential stress for the turbulent 
core is 

T~ ~ ~A Herdu/dr = T 0 ( l ~ ) ,  

Ufa. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 
153-162, July-August, 1978. Original article submitted July 20, 1977. 
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whence 

~ = Av Re ,. ~ Eo ( l  - 7-) 
p du /dr  ' ( 2 )  

where Re r is the local Reynolds number, To is the tangential stress at the pipe wall, r = 
r/ro is the relative coordinate, and ro is the radius of the pipe. 

On the basis of the dimensional considerations we can form a single combination with 
the dimensions of velocity gradient: 

d-F = V T - 7 - "  

Substituting the latter relation into (2), we obtain 

o r  
VT 

A v R e  r ~ V ~ . ( i - r ) r  

: r A R e  r = v R e ~  ( t  - -  r)r .  

Considering the fact that ~T = 0 for r = ~, we represent the variation of the kinematic 
turbulent viscosity along the radius in the form 

v ,  = v [Bek(i - -  r)(r-- 6)], ( 3 )  

where Re k is the basic Reynolds number corresponding to A = Recr = 1 (to be defined below) 
and 6 = ~/ro is the relative thickness of the viscous sublayer. 

Substituting the value of (3) into (i) and making a simple transformation, we obtain the 
equation 

- ~[i+ae~p(~ ~)(i - += �9 - ~  - - r ) ] ~  (4) 

subject to the following boundary conditions: du/dr = 0 and u = U at r = I; u = u L at r = ~, 
where U is the maximum velocity and u L is the velocity at the boundary of the (laminar) 
viscous sublayer. 

Equation (4) can be solved in two variants: i) constant tangential stress equal to the 
tangential stress To at the pipe wall; 2) tangential stress dependent on the radius, i.e,, 
r = f(r). 

For the first variant, ignoring the viscous sublayer, we obtain from expression (4) 

�9 = - ;  - r ) ] -~ .  

Inasmuch as T = T0(I --r) for a circular pipe, the foregoing expression takes the form 

ro dr 

If we now take into account the presence of the viscous sublayer, the equation of motion for 
the first variant assumes the form 

�9 o =  + 
dr 
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After integration and transformation we obtain (u ffi U at r = i)* 

Zv [ l + [ 3 R e  k ( l - 8 )  ' 

J 
f 

J 

(5) 

TO ro 
X~ --~R%(U-- u) (6)  

and v is the mean velocity. The velocity scale is the velocity difference U -- v. 

For large Reynolds numbers (BRe k >> i) the thickness of the viscous sublayer tends to 
zero in the limit. From the flow-rate equation 

I 

0 

we find the value of the coefficient Xv = 1.5. In this case the equation (5) for the veloc- 
ity distribution takes the following form at large Reynolds numbers: 

u = U 4" (2/3)(U - -  v)lnT. (7 )  

From e x p r e s s i o n  (6)  we d e t e r m i n e  t h e  t a n g e n t i a l  s t r e s s  a t  t h e  p i p e  w a l l :  

2 ~Reh U- -  v 
~0 ~ ~ ro " 

The equation for the frictional drag between two cross sections of a circular pipe with a 
distance ~ between them is written (with regard for the fact that Ap/l ffi 2To/ro) in the form 

~P~ ---~4 ~ R % U j v ~  (8)  

Since the velocity scale is the velocity difference U -- v, we have 

Rek = (U--uk)ro/~, 
where u k is the characteristic velocity at the characteristic radius r k. 

The quantity pRe k in (8) is the weighted-mean dynamic turbulent viscosity coefficient 
over the flow domain and is determined from the relation 

l~ Re k ( U -  u) 

S o l v i n g  r e l a t i o n s  (8)  and  (9)  s i m u l t a n e o u s l y ,  we o b t a i n  t h e  r e l a t i v e  r a d i u s  r k a t  w h i c h  t h e  
i n s t a n t a n e o u s  f l o w  v e l o c i t y  u i s  e q u a l  t o  Uk: 

~ = 0 . 8 6 6 6 . . .  

I n s e r t i n g  i n t o  Eq. (7)  t h e  v a l u e s  o f  u = v a t  r = r v and  u = u k a t  r = r k ,  we o b t a i n  t h e  
following relation between Re k and Rev: 

R%= --In~ (U--v)~0 
--lnr~ 

*See Galimzyanov [i0] for the case ~ ffi i. 
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Substituting the value of Re k into (8), we obtain 

AP 4 U -- v 
! - - y Z k  ~Re, r-- T. 

%v 

The frictional drag coefficient referred to the fundamental turbulent-flow parameters 

(~Rev, U--v, ro) is 
4 %k 

i 

Substituting the values of Xv = i. 5 and Xk = --in 0.8666 = O.1432 into the latter expression, 
we obtain the value 

] = 0.127g-9, 

which corresponds very well with published experiments [7]. 

We now return to the equation (5) for the velocity distribution of weak polymer solu- 
tions at arbitrary Reynolds number_s. The coefficient Xv is determined from the condition 
that u = v (mean velocity) at r = rv: 

�9 ] ( l l )  Xv : --In . . . . . . .  9 

and the coefficient Xk is determined from the condition that u = u k at r = rk: 

= --In R% ] c12) 
L1+~Re h(~-~)  " 

The tangential stress created at the pipe wall is found from expression (6) with con- 
sideration for relation (i0): 

X~ ~ Re  v U - -  u To = ~-v r0 ( 1 3 )  

Here the coefficients Xv and Xk are given by expressions (ii) and (12), respectively. 

For a linear velocity distribution the tangential stress at the boundary of the viscous 
sublayer is given by the expression 

(U-- v) "% = 2F pa 614) 

Equating (13) and (14) with regard for expression (I0), we obtain an equation for the 
relative thickness of the viscous sublayer: 

-~ = 2Xj~l%~Re v = 2XJ~Re~ 615) 

from which it follows that the thickness of the sublayer increases with polymer additives, 
since B < I. This result is fully consistent with the published experimental results [1-4]. 

All the parameters of the i_nves_tigated turbulent motion depend in some degree or other 
on the coefficients Xv = f(Rek, rv, 8) and Xk = ~(Rek, rk, 6). For large Reynolds numbers 
the coefficients Xv and Xk and the radii r v and r k tend to constant values. Here the thick- 
ness of the viscous sublayer is small in comparison with the radius. 
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Calculations show that 

(t + 0.2231~ Re k ) ~o=--In\ I+~B% _' (16) 

where the coefficient r-- v = 0.2231 corresponds to large Reynolds numbers. 

For the coefficient Xk we obtain the expression 

( l + 0.86668 Re~ l T u  /, (17) Xk In 

in which r k = 0.8666 corresponds to a very large Reynolds number. 

Graphs of Xv = f(Re,, 8), Xk = ~(Re*, $), calculated according to (16) and (17), are 
given in Figs. i and 2, in which the curves are numbered as follows: l) 8 = 0. I; 2) 0.2; 3) 
0.4; 4) 0.6; 5) 1.0. 

In the theory of wall turbulence [7] the velocity scale is interpreted as the dynamic 
velocity 

v,=V~olp.  
The relationships between the various scale velocities are determined from expressions 

(i0) and (13) and have the form 

v, = (x/x~)(u - v); (18)  

v,=-~-I (U__uh)  or R% = g v , r o / v =  ERe,, (19) 

where 

X =Vx~.  (20) 
At r = 6 the velocity distribution described by Eq. (5) merges smoothly with the velocity 

distribution of the viscous sublayer, where u = u L. Substituting these conditions into Eq. 
(5) and adopting the dynamic velocity v, as the velocity scale, after transformations with 
regard for relations (18)-(20) we have 

u L ~--~, = ~x  In [t + xP Re,  (7 - ~)1 + ~_. C21) 

The velocity at the boundary of the viscous sublayer is given by the expression [8] 

ULIV , = By, Iv. 

Making use of relations (I0) and (15) and carrying out appropriate transformations, we obtain 

u ~ u ,  ---- 2X=/PX. C22) 

Substituting the values (22) and (15) into Eq. (21), we obtain the final equation for the 
velocity distribution in universal coordinates: 

u"~- -= i [ln (i -k ~X Re* ~ -- 2Z~) + 2"-~-1" v, (23) 
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A comparison of Eq. C23) with the Prandtl--K~rm~n equation [8] in the semiempirical 
theory of wall turbulence indicates that the coefficient X is nothing other than the Prandtl-- 
K~rm~n coefficient. For weak polymer solutions X is determined analytically from ~20~ or 
the expression 

~ - _ ( l + O * 8 6 6 6 ~ R e h )  (24) 
X = In i+ ~R% " 

It is evident from expression (24) and Fig. 2 that the Prandtl--K~rm~n coefficient de- 
pends on the Reynolds number and on the coefficient of influence of polymer additives on 
turbulent motion, 8. 

The influence of the polymer additives (for 8 = const) on the coefficient X is signifi- 
cant for small Reynolds numbers and is practically nonexistent for large Reynolds numbers. 

The value of the coefficient 8 depends on the concentration of the polymer solution and 
its type (polyacrylamide, polyox, etc.) [9] and in the absence of degradation does not depend 
on the motion of the solution. For prolonged circulation of polymer solutions and large 
Reynolds numbers there is a gradual lessening of the drag reduction (i.e., an increase in 
the coefficient 8). 

The second component of (23), which is described by expression (22), characterizes the 
viscous sublayer and, as is apparent from Fig. 3, tends to a constant value as the Reynolds 
number is increased, but that value covers a wide range of variation with 8. 

Figure 4 gives the velocity distribution calculated according to (23); it concurs very 
well with the experimental data [1-3]. 

For turbulent motion of a weak polymer solution the frictional drag is determined from 
expression (13) on the basis of the equilibrium condition 

Ap 2X_kk~BevU--v 7 =  z~ r ~ "  (25) 

The coefficient of frictional drag referred to the fundamental turbulent-flow parameters 
in a circular pipe is 

/ = 2X~/X~. 

The dependence of the frictional drag coefficient f on the coefficient 8 is conspicuous 
only at small values of the Reynolds number. For large values of the Reynolds number (ir- 
respective of the value of 8) the frictional drag coefficient tends to a constant value f = 
0.12739; see Fig. 5: i) B = 0. i; 2) 0.2; 3) 0.4; 4) 0.6; 5) 1.0. In the adopted fundamental 
parameters the frictional drag coefficient f of weak polymer solutions for small Reynolds 
numbers becomes greater than for the ordinary liquid, i.e., the drag-reduction effect ob- 
served experimentally should, it seems, not take place. This apparent contraduction is re- 
moved by analyzing the variation of the ratio between the mean velocity v and the maximum 
velocity U. 

At r = i we have u = U, so that from (23) we obtain an equation for the maximum velocity 
in universal coordinates: 

It follows from expression (18) that 

(U--v)/~, = ~Jx .  ~ 7 )  

Solving Eqs. (26) and (27) s imultaneously,  we obtain  an equation for the v a r i a t i o n  of the 
mean velocity in universal coordinates: 

The ratio of the mean to the maximum velocity has the form 

v Xv 
U (29) 

in (i ~- PX Re, --2X~ ) ~-2~" 
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It is apparent from Eq. (29) and Fig. 6 that as the coefficient B is decreased the value of 
the mean velocity approaches the value of the maximum velocity, and the difference U -- v in 
(25) decreases. As a result, the absolute value of the frictional drag for weak polymer solu= 
tions becomes less than for the ordinary liquid. The curves are numbered as follows in Fig. 
6: i )  ~B = 0 . i ;  2) 0.2; 3) 0.4; 4) 0.6; 5) 1.0. 

In engineering calculations the frictional drag is expressed by the equation 

Ap=~! v' 2r0 p T' (30) 

in which % is the coefficient of frictional drag. 

Equating expressions (25) and (30) and carrying out transformations with regard for 
relations (26) and (28), we obtain 

2 �9 (31 )  
i .  (i + ,x Be, - 2xv) + - f  - I Xo 

It follows from Eq. (31) that the frictional drag coefficient for weak polymer solutions is 
less (for B = const < i) than for the ordinary liquid; see Fig. 7: i) B = 0. i; 2) 0.2; 3) 
0.4; 4) 0.6; 5) 1.0. 

The analytical relations derived above agree quite well with the experimental data [1-3]. 

The solution of the second variant of Eq. (4) yields the following expression for the 
velocity distribution: 

i -- ~ in [(Mo-~ 2~-- i --~) (Mo +'~-- i)]} 
u = U §  ;% (U_v)Lln[l§ -6)(t,r)] ~ Mo L(M0--2~+i+8) (M0--~§  (32) 

where Mo = ~(4/B Re k) + (i _T)2; 
1 , F(M - -  0,5538) ( M  - -  I ) l l  

xo = - ~-- { In (i  + 0.17335p ae~) + ~ - , n  [(M + 0.55aS) (M + 1)17 ( 3 3 )  

where M = r Re k) +l. The coefficient Xv is determined from Eq. (32) for r = r v 0.2231, 
where u = v. 

The velocity distribution in universal coordinates for turbulent motion of weak polymer 
solutions in a hydraulically smooth pipe is obtained from Eq. (4) and has the form 

v'-~u = '~1{  - - § "-'~oi--~ [(Mo q-2~--~-- i) (Mo--~-- i)] } (34) ln[ t  § ~xRe,  (t - - r ) ( r  --~)] In [ ~ - - ~ ~ _ - - ~ )  j §  

where X = Xd~k �9 

The c o e f f i c i e n t  Xk i s  de te rmined  from (32) f o r  r = r k ~ 0 .8666,  where u = v,  and i t  has 
the form 

{ I . [ (M+ 0.7~)(u-- , ) lL x~ = - in (~ + 0,ti55~ ~ek) + ~ m [ ~ ( ~ ] ?  (35) 

Equat ions  (32) and (34) d e s c r i b e  the  v e l o c i t y  d i _ s t r i b u t i o n  over  the  e n t i r e  range  of  v a r i -  
a t i o n  Of r from 0 to  1. On the  p ipe  a x i s ,  i . d . ,  a t  r = 1, t he  c o n d i t i o n  du /d r  = 0 i s  s a t i s -  
f i e d .  C a l c u l a t i o n s  show t h a t  f o r  l a r g e  Reynolds  numbers Eqs. (32) and (34~ d i f f e r  on ly  v e r y  
s l i g h t l y  from Eqs. (5) and (23) and in  f a c t  the  d i f f e r e n c e  i s  p e r c e p t i b l e  on ly  c l o s e  to the  
p ipe  a x i s .  The v a l u e s  of  the  c o e f f i c i e n t s  • and Xk c a l c u l a t e d  acco rd ing  to C33) and (35) 
d i f f e r  i n c o n s e q u e n t i a l l y  from the  v a l u e s  c a l c u l a t e d  acco rd ing  to  (16) and (17) .  The d i f -  
f e r e n c e  h e r e  i s  p e r c e p t i b l e  on ly  f o r  smal l  Reynolds  numbers. 

For the  f r i c t i o n a l  drag c o e f f i c i e n t  % we o b t a i n  the  e x p r e s s i o n  

which differs only very slightly from Eq. (3l). 
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NUMERICAL SOLUTION OF THE TWO-DIMENSIONAL PROBLEM OF DIRECTED 

CRYSTALLIZATION 

V. P. ll'in and L. V. Yausheva UDC 518.3 

In [1-4] mathematical models of the process of directed crystallization were constructed 
and investigated in a one-dimensional approximation. However, these models do not explain 
such experimentally observed phenomena as the inhomogeneity of the distribution of an impur- 
ity over a transverse cross section of the ingot. To clarify the structure of the concentra- 
tion profile, the present article considers a mathematical model of the process of directed 
crystallization in a two-dimensional approximation, taking account of diffusion in the melt~ 
Integral balance relationships are used to construct two difference schemes and to obtain 
evaluations of the error of the difference solutions. On the basis of numerical calculations 
an analysis is made of radial inhomogeneity for different configurations of the crystalliza- 
tion front, depending on different values of the crystallization rate v and the equilibrium 
coefficient ko [5]. 

We assume that the thermal characteristics of the substance depend only slightly on the 
concentration of the impurity and that the diffusion coefficient depends on the temperature. 
The problem of the redistribution of the impurity can then be considered separately from the 
thermal Stefan problem, assuming that the configuration of the front at every moment of time 
z = z(r, t) and the rate of displacement v are known. 

We consider an ingot of cylindrical form of radius R and finite length L s. The inter- 
face between the two phases and the boundary conditions are assumed to be symmetrical with 
respect to the axis. We shall assume that the principal mechanism of mixing in the melt is 
diffusion. Then the distribution of the concentration of the impurity in the region z(r, 
t) < z < L s (0 < r < R) obeys the diffusion equation 

Ou D O( O~r ) O'u ( 1 )  
Ot r Or r + D 0 7  

and the initial condition 

u ( r ,  z ,  O) = Uo = c o r o t .  

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnichekoi Fiziki, No. 
4, pp. 163-166, July-August, 1978. Original article submitted October ~ 19_77. 
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